多望远镜信号接收的激光测距系统探测能力

张海峰 1.2, 龙明亮 1, 邓华荣 1, 程志恩 1, 张忠萍 1.2

(1. 中国科学院上海天文台,上海 200030;

2. 中国科学院空间目标与碎片观测重点实验室,江苏南京 210008)

摘 要:地面激光测距站向空间目标发射激光信号后,其反射的回波信号达到地面站时将覆盖一定 范围,通过设置多台望远镜接收信号,有利于提升对激光信号探测能力。根据激光雷达测距方程及信 号探测概率,分析了多望远镜信号接收系统的探测概率、提升效果以及等效接收能力。利用中国科学 院上海天文台相距约60m、口径分别为1.56m和60cm双望远镜系统,通过双望远镜同时接收卫星 的回波信号,研究了双望远镜信号接收系统探测能力。相比原60cm口径望远镜系统,单位时间内激 光回波数增加了四五倍。考虑到1.56m口径望远镜激光测量性能,双望远镜可等效于一台口径约 1.61m望远镜系统接收能力,验证了多望远镜信号接收可行性和技术优势。分析了多望远镜系统对轨 道高度1000km、直径10cm非合作目标测量能力及所需望远镜台数,使该测量技术在微弱信号探测 与大口径望远镜激光测量中将会发挥重要作用。

关键词:激光测距; 多望远镜接收信号; 测量系统; 探测能力 中图分类号:TN249 文献标志码:A DOI:10.3788/IRLA201847.0906002

Detection ability of laser ranging system based on multi-telescopes to receive echo signal

Zhang Haifeng^{1,2}, Long Mingliang^{1,2}, Deng Huarong¹, Cheng Zhien¹, Zhang Zhongping^{1,2}

(1. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;
2. Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract: The laser echo signal will cover the certain range while laser ranging to space targets through transmitting laser signal from the ground station. The number of laser echoes per unit time will be obviously increased through utilizing multi-telescopes to receive signal on ground. It's very helpful to enhance the detection ability of measuring space targets for laser ranging system. According to laser ranging link equation and the theory of signal detecting probability, the analysis of the effect on the detecting probability of laser ranging system with multi-telescopes to receive laser signal was performed to research on the equivalent receiving ability. Based on the 1.56 m aperture of astronomical telescope about 60 m far from the 60 cm telescope at Shanghai Astronomical Observatory, Chinese Academy of Sciences, the activity of laser ranging to artificial satellites with retro-reflector was implemented to

Email:hfzhang@shao.ac.cn

收稿日期:2018-04-05; 修订日期:2018-05-03

基金项目:国家自然科学基金(11503068,U1631240);中国科学院关键技术人才项目

作者简介:张海峰(1981-),男,高级工程师,硕士生导师,硕士,主要从事空间目标高精度激光测距技术及应用方面的研究。

research on the detecting ability of dual-telescopes while simultaneously receiving laser echo signal. The number of laser echoes had increased by 4 to 5 times compared with the aperture of 60 cm telescope system. The effect on increasing the detecting ability of measuring space targets was obvious. Considering the laser measuring ability of 1.56 m telescope system, the equivalent receiving aperture of 1.61 m can be derived for 1.56 m/60 cm telescopes. The analysis on the detection ability of laser ranging to space targets with the orbit height of 1 000 km and the size of 10 cm and number of receiving telescopes were also performed. From the experiments the technical feasibility and advantage of multi-telescopes to receive signal are validated, which will play an important role in the weak signal detection and laser ranging in future. **Key words:** laser ranging; multi-telescopes receiving signal; measuring system; detecting ability

0 引 言

随着空间技术的迅速发展,拥有外层空间已成 为未来国际航天大国发展的战略核心。空间力量作 用日益凸显,并对空间目标测量技术的依赖性越来 越强,增强空间目标监测能力成为世界航天大国优 先发展的技术。激光测距技术的高精度特性应用于 空间目标监测,对提升目标轨道测定精度、预报能 力、编目精度、预警能力等具有重要作用^[1-2]。

空间目标激光测距通常采用测量激光脉冲信号 往返于地面站与空间目标飞行时间,获取目标高精 度距离信息。激光回波信号强度随传输距离四次方 衰减。对于远距离目标 (月球反射器及其轨道飞行 器)或激光漫反射目标(空间碎片等非合作目标),返 回激光信号弱,探测难度大^[3-5],地面测量系统需大 口径望远镜系统的支持。但对于光学望远镜,接收口 径增大需要大口径光学镜磨制技术、大规模支撑结 构及驱动装置支撑,因实现难度大、且系统复杂、快 速响应能力低等特点,限制了大口径望远镜系统灵 活应用。

对于激光测距,从目标返回的激光信号可覆盖 一定范围,这意味着在此范围内均可对回波信号进 行接收和探测。在该区域内,通过设置多台望远镜同 时接收探测激光回波信号,并实时传输到主控制系 统,可有效增加地面系统单位时间内激光回波数,十 分有利于提升对目标测量能力^[6-7]。基于单台望远镜 信号接收与探测原理,根据激光雷达测距方程及信 号探测概率理论,文中研究了地面激光测距系统采 用多望远镜信号接收的系统探测概率、等效口径接 收能力,并结合双望远镜系统实际测量结果进行理 论方法验证,为该测量技术的后续实践应用奠定了 基础。

1 多望远镜信号接收激光探测概率模型

1.1 激光回波光子数

对于空间目标激光测距,从地面站发射的激光 信号,按照一定发散角穿过大气层达到目标,并进行 反射,返回地面站系统。激光往返传输过程,可按激 光雷达测距方程进行描述^[8]。根据地面站测量系统 参数、空间目标反射截面积等,可计算地面站所获得 的平均光电子数:

$$n_0 = \eta_q \left(E_t \frac{\lambda}{h_c} \right) G_t \sigma \left(\frac{1}{4\pi R^2} \right)^2 A_r K_t K_r T_a^2 \alpha \qquad (1)$$

式中: n_0 为系统接收平均光电子数; η_q 为地面站激光 探测器探测效率; E_t 为激光器单脉冲能量; λ 为激光 波长(532 nm);h为普朗克常量(6.63×10⁻³⁴ J·s);c为 光速;增益 G_t 为8/ θ_t^2 ×exp[$-2(\theta/\theta_t)^2$], θ_t 为激光发散 角(半角), θ 为激光指向误差。通常情况下,激光束指 向误差(~1")相比激光发散角(8"~12")小很多,此时 G_t 近似表示为8/ θ_t^2 ;R为目标到台站距离; σ 为目标 反射截面积; A_t 为地面系统有效接收面积; K_t 为发射 光学系统效率; K_t 为接收光学系统效率; T^2 为双程大 气透过率; α 取大气衰减因子。

按照泊松分布,平均光电子数为 n₀时,发射n 个 光电子概率为^[9]:

$$P(n, n_0) = \frac{n_0^n}{n!} e^{-n_0}$$
(2)

对于单光子激光探测器,则产生一个光电子数的概率 *P*(1)为:

$$P(1) = 1 - e^{-n_0}$$
(3)

假定激光发射频率为*f*,则地面测量系统每秒理 论上可接收到的激光回波数为*P*(1)×*f*。

上述计算得到的激光回波数是未考虑望远镜跟 踪误差影响。对于望远镜系统,总存在着一定跟踪误 差,对激光回波信号探测概率产生一些影响。根据参 考文献[8],望远镜跟踪误差对激光回波数影响因子 为 $1/(1+\sigma_p^2/\sigma_t^2)$,其中, σ_p 为望远镜跟踪误差, σ_t 为激 光发散角(半角),即在上述计算的激光回波数基础 上考虑跟踪误差的影响因子。

1.2 多望远镜信号接收激光探测概率

根据公式(3),地面测量系统未探测到光电子数 概率为:

$$P' = 1 - P(1) = e^{-n_0} \tag{4}$$

对于多望远镜系统,各个望远镜采用独立的接 收和探测系统,相互间不影响,即每台望远镜接收到 单个光电子的概率为独立事件。假定多台望远镜系 统参数相同,且激光回波信号在接收区域内分布均 匀,则第 N 台望远镜接收到一个光电子的概率为:

$$P_{N}(1) = 1 - e^{-n_{0}}$$
(5)

同样,第N台望远镜未探测到光电子的概率为:

$$P_N'(1) = 1 - P_N(1) = e^{-n_0}$$
(6)

对于地面 N 台望远镜接收系统,只要一台望远 镜接收到一个光电子,则表示地面测量系统成功探 测回波光子数,其对立事件为:没有一台望远镜接收 到一个光电子,其对应的概率为:

$$P_{1 \sim N}'(1) = P_1'(1) \times P_2'(1) \times \dots \times P_N'(1) = e^{-Nn_0}$$
(7)

则对于 N 台望远镜组合测量系统的总激光探测 概率为:

$$P_{1 \sim N}(1) = 1 - P_{1 \sim N}'(1) = 1 - e^{-Nn_0}$$
(8)

1.3 多望远镜信号接收探测能力分析

相比于单台望远镜信号接收,则总共N台参数相 同望远镜组合测量系统激光探测概率的提升倍数为:

$$B = P_{1 \sim N}(1) / P_1(1) = (1 - e^{-Nn_0}) / (1 - e^{-n_0})$$
(9)

由公式 *xⁿ*-1=(*x*-1)(*xⁿ⁻¹*+*xⁿ⁻²*+*xⁿ⁻³*+…+*x*+1),公式(9) 化简为:

$$B=1+e^{-n_0}+e^{-2n_0}+\dots+e^{-(N-2)n_0}+e^{-(N-1)n_0}$$
(10)

对于同步轨道卫星(距离 38800 km),基于中国科 学院上海天文台 (下面简称上海天文台)60 cm 口径望 远镜激光测距系统、1 kHz 重复率 1 W 激光器系统(激 光发散角取 10")、光子探测效率取 0.2,根据激光雷达 测距方程,则单次脉冲发射后地面测量系统可探测的 光电子数约 0.0068 个,即 n₀=0.0068。根据公式(10), 可得由 N 台 60 cm 口径望远镜组合测量系统激光探 测概率及其相对于单台望远镜探测概率提升倍数的 关系,如图 1(a)和图 1(b)所示,其中 N 取 10。

图 1 激光探测概率(a)、提升倍数(b)与望远镜台数关系(同步卫星) Fig.1 Probability of laser signal detection(a) and increased times(b) vs number of receiving telescopes (GEO satellite)

假定单次脉冲发射后可探测的光电子数提高 50倍,即0.34个,相当于测量中轨卫星(~20000km), 具有较强的回波信号,则地面多望远镜信号接收测 量系统的激光探测概率及其提升倍数关系如图2(a) 和图2(b)所示。

由图1和图2可知,对于远距离微弱信号探测, 多望远镜系统的激光探测概率及提升倍数随望远镜 台数呈线性增加;而对于较强回波信号探测,则随着 望远镜台数增多,增加趋势变缓。由此说明,在微弱 信号探测情况下,可更好地体现出多台望远镜同时 进行信号接收模式的测量技术优势,增强地面系统 红外与激光工程 www.irla.cn

图 2 激光探测概率(a)、提升倍数(b)与望远镜台数关系(中轨卫星) Fig.2 Probability of laser signal detection(a) and increased times(b) vs number of receiving telescopes (MEO)

1.4 多望远镜信号接收等效望远镜口径分析

对于 N 台望远镜接收信号,系统探测概率如公式(8)所示,即 $P_{1-N}(1)=1-e^{-Nn_o}$ 。将激光雷达测距方程 写成如下形式:

 $n_0 = C \times F(\eta_q, E_t, \theta_t^{-2}, K_t, K_r, A_s, \theta_s^{-2}, R^{-4}, T^2, \alpha) \times A_r$ (11) 式中:C 为常数项;F 为含有测量系统及目标参数 项;A_r 为地面接收望远镜有效接收面积,则公式(8) 可写成如下形式:

$$P_{1\sim N}(1) = 1 - e^{-C \times F \times N \times A_{f}}$$
(12)

定义 $A_r'=N\times A_r$,即 A_r' 为 N 台望远镜接收信号时 地面系统的等效接收面积。若单台望远镜有效接收 面积为 A_r ,其有效接收口径记为 D,则 N 台同口径望 远镜系统所对应的等效接收口径 $D'=D\times\sqrt{N}$ 。

对于 N 台不同口径的接收望远镜,假设第 N 台 望远镜有效面积为 b_NA_r,其中 b_N 为第 N 台望远镜相 对于有效接收面积为 A,望远镜的口径之比的平方。 假定接收面积 A,所对应光电子数为 n₀,则第 N 台望 远镜系统未接收到光电子概率为:

$$P_N'(1) = e^{-b_N n_0}$$
(13)

则 N 台望远镜组合后未接收到的概率为:

 $P_{1\sim N}'(1) = P_1'(1)P_2'(1)\cdots P_N'(1) = e^{-(b_1+b_2+\cdots+b_N)n_0}$ (14)

按照事件相反法则,总数为 N 台望远镜系统总的单个光电子的概率为:

$$P_{1 \sim N}(1) = 1 - P_{1 \sim N}'(1) = 1 - e^{-(b_1 + b_2 + \dots + b_N)n_0}$$
(15)

同样,定义A_r'=(b₁+b₂+…+b_N)A_r,则N台同口径 望远镜系统所对应的等效接收口径为:

$$D'=2\times\sqrt{(b_1+b_2+\cdots+b_N)A_r/\pi}$$
(16)

式中: *b*₁~*b*_N为1-N台望远镜分别相对于接收面积A, 望远镜的口径之比的平方。

2 1.56 m/60 cm 双望远镜信号接收与分析

为验证多望远镜信号接收能力,基于相距约60m 的双望远镜系统,通过测量卫星,进行了试验验证, 验证大口径望远镜的等效接收能力。

2.1 1.56 m/60 cm 双望远镜试验系统

上海天文台是目前我国天文观测与专业研究的 天文台之一。其中,在光学观测望远镜方面,拥有 一台1.56m口径天文观测望远镜和一台60cm口 径激光测距望远镜,共处于同一园区,两者相距约 60m。表1给出了1.56m口径天文望远镜和60cm 口径望远镜系统的主要参数^[10-11]。

表 1 1.56 m 和 60 cm 口径望远镜系统主要性能参数 Tab.1 Major specifications of the aperture of 1.56 m

and 60 cm t	elescopes	system
-------------	-----------	--------

Items	1.56 m telescope system	60 cm telescope system		
Optical mode	R-C system	R-C system		
Tracking mount	Equatorial	Altazimuth		
Focus length/m	15.6	5.2		
Diameter of secondary mirror/m	0.5	0.2		
Efficiency of receiving optical system	~55%@532 nm	~60%@532 nm		
Efficiency of laser detector	C–SPAD, 20% @532 nm	C-SPAD,20% @532 nm		
FOV of detection/(")	~45	~135		
Tracking precision (RMS)/(")	~2	~1		
Timing system	A033 Event Timer	A033 Event Timer		
Efficiency of laser transmitting system	none	~70%@532 nm		
Laser system	none	1 W@1 000 Hz		
Diameter of laser transmitting telescope	none	21 cm		
Divergence of laser signal/(")	none	10-12		

2.2 1.56 m/60 cm 口径望远镜系统激光信号探测 概率及回波数分析

根据表1中1.56m/60cm口径望远镜系统参数、激光雷达测距方程、及激光信号探测概率模型,

分别计算了双望远镜对轨道高度 20 000 km Glonass 卫星和 6 000 km 的 Lageos 卫星激光回波信号探测 概率及每 10 s 钟激光回波数,其中双程大气透过率 取 0.15,衰减因子取 0.01,如表 2 所示。

表 2 1.56 m 和 60 cm 口径望远镜各自系统信号探测概率及回波数												
Tab.2 Respective	probability	and echo	number	of laser	signal	detection	for	1.56 m	and	60 cm	telescope	2S

Satellite	Distance/km	Cross section $\sigma/m^{2[12]}$	Receiving telescope	Number of photoelectron n_0	Detecting probability	Number of laser echoes per 10 s
Lageosl 6 496–6 672	15×106	60 cm	0.156 4-0.140 5	0.144 5-0.130 8	1 445-1 308	
	13×10	1.56 m	0.917 3-0.824 3	0.599 5-0.560 6	5 995-5 606	
Glonass126 19 797–20 03	10 707 - 20 032	<u>80×10⁶</u>	60 cm	0.045 3-0.043 2	0.044 2-0.042 2	442-422
	19 (91-20 032	00×10	1.56 m	0.212 7-0.202 8	0.191 2-0.183 2	1 912-1 832

根据表 2 中计算的 1.56 m/60 cm 口径望远镜探 测概率,计算了双望远镜组合后的系统总探测概率, 如表 3 所示。通过对比表 2 和表 3 中激光探测概率, 双望远镜组合后,相比 60 cm 口径望远镜提升了四 五倍,略低于 1.56 m 望远镜接收面积增加的倍数(六 七倍),主要是由于目前 1.56 m 口径望远镜系统在卫 星跟踪性能、激光信号接收效率等方面均差于 60 cm 口径望远镜系统,未充分体现 1.56 m 口径望远镜强 接收能力,其相当于 1.35 m 口径望远镜接收能力。

根据表 3 中双望远镜组合系统探测概率、激光 雷达测距方程及系统参数,可计算出双望远镜系统 组合后可等效口径约 1.61 m 望远镜系统接收能力。

表 3 1.56 m/60 cm 口径双望远镜组合系统探测概率及回波数

Tab.3 Combined detection probability and echo number of laser signal detection for 1.56 m and 60 cm telescopes

Satellite	False detec	ting probability	Combined false detecting probability	Combined detecting probability	Number of laser echoes per 10 s	
Lageosl	60 cm	0.855 5-0.869 2	0.2426 0.2210	0.657.2 0.619.0	6 573-6 180	
	1.56 m	0.400 5-0.439 4	0.342 0-0.361 9	0.037 3-0.018 0		
Glonass126	60 cm	0.955 8-0.957 8	0.2426 0.2210	0.226.0 0.217.6	2 260 2 176	
	1.56 m	0.808 8-0.816 8	0.342 0-0.381 9	0.220 9-0.217 0	2 209-2 170	

2.3 1.56 m/60 cm 双望远镜卫星观测结果分析

通过对 1.56 m 望远镜系统接收终端改造,具备 了激光回波信号接收探测能力,分别对 Lageos、 Glonass、Compass 等卫星进行了激光测距。图 3 给出 了 1.56 m/60 cm 双望远镜系统同时对 Lageos1 和 Glonass126 卫星观测时激光回波数据统计情况,时 间间隔为 10 s。由图可知,1.56 m 望远镜回波数是 60 cm 望远镜的四五倍,与前节理论计算结果基本 一致。

图 3 1.56 m/60 cm 双望远镜各自接收 Lageos1(a)和 Glonass128 (b)回波信号统计

Fig.3 Statistic of laser echoes respectively received by 1.56 m/ 60 cm telescopes per 10s from Lageos1(a)和 Glonass128 (b) satellites

根据第2章分析,对于多望远镜接收系统,只要 有一个望远镜获得有效激光回波信号即可认为多望 远镜系统整体成功测量到目标。在实际激光信号探 测中,多个望远镜在激光脉冲发射同一周期内可同 时获得回波信号,即一个发射脉冲对应多个回波信 号情况。为检验表3中理论计算的1.56m/60 cm 双 望远镜系统组合系统探测概率及回波数,对 Lageosl 和 Glonass128 卫星的双望远镜测量数据进行了融合 处理及回波数统计,统计时间间隔仍取 10 s。其中在 数据融合时,如双望远镜获得了同时刻数据,保留其 中一个回波数据。图4给出了双望远镜数据融合后 每 10 s 的激光回波数统计情况。

根据图 4 中统计结果,对于 Lageosl 和 Glonass126 卫星,每 10s 平均回波数分别为 3 345 个和 1 507个。 考虑到实际卫星观测中系统参数与理论计算中选取 的值存在误差及背景噪声信号的影响,实际回波数 与理论计算结果有差别。图 4 中激光回波数统计峰 值接近表 3 中理论计算结果,基本验证了文中多接 收望远镜信号接收激光探测理论方法的合理性。

对于多望远镜信号接收,由于多个望远镜系统 存在同一测量周期内同时获得回波信号的可能性, 即地面站发射一个激光脉冲信号,可获得多个回波 数据。在此情况下,多望远镜系统在增加有效接收面 积提高系统探测概率的同时,也增加了单位时间激 光回波数,通过在主控制系统中进行多回波数据的 融合处理,加强激光回波信号的显示度,提升了激光 回波信噪比,进而增强激光回波信号识别能力及对 空间目标的测量能力。

3 轨道高度 1000 km、直径 10 cm 非合作目标的多望远镜信号接收能力分析

根据上海天文台已开展的非合作空间目标激光测量情况^[13],及激光雷达测距方程(公式(1)),在激光 发射和接收效率均为0.85,光子探测效率为40%,大 气透过率(双程)取0.4 情况下,从理论上给出对于距 离2000 km(轨道高度1000 km)、直径10 cm 非合作 目标激光测量时所采用的激光功率、望远镜口径关 系,如图5 所示。

图 5 测量距离 2000 km、直径 10 cm 非合作目标时的激光功率 与望远镜口径关系

Fig.5 Relation of laser power and the aperture of receiving telescope to measure space targets with the distance of 2 000 km, size of 10 cm

由图 5 理论计算结果可知,对于距离 2000 km(轨 道高度 1000 km)、直径 10 cm 非合作目标,采用激光 功率 200W、发散角 3"时,则望远镜口径需 1.8m;采用 激光功率 200W、发散角 5"时,则望远镜口径需 3.0m。 在上述情况下,每 5 s 的理论激光回波数约 27 个。

根据 1.4 小节分析,在系统参数相同情况下, N 台 口径为 N 望远镜可等效为单台口径为 $\sqrt{N} \times D$ 望远镜 激接收能力。在系统参数相同情况下,可计算出当采用 口径 0.5m 和 0.8m 望远镜时,要达到上述回波数所需 要的台数分别为 13 台和 5 台;当采用口径 0.8 m 和 1.2 m 望远镜时,需要的台数分别为 14 台和 6 台。

根据上述理论与试验结果分析,使用一定数量 小口径望远镜,可实现单台大口径望远镜等效接收 能力。此外,小口径望远镜,具有系统研制技术成熟 度高,运行稳定性好、快速响应性等优势,在微弱信 号空间目标激光探测和测量中将发挥重要作用。

4 结束语

在对远距离卫星、漫反射激光观测目标时,激光 回波信号微弱,地面站需要大口径望远镜系统的支 持。考虑到地面站向空间目标发射激光信号后,其回 波信号达到地面站时将覆盖一定区域,在此区域内 设置多台望远镜同时接收回波信号,可增加地面站 对回波信号接收性能,实现单台大口径望远镜系统 等效接收能力。

根据激光雷达测距方程及信号探测概率理论, 分析了多望远镜信号接收的激光测距系统探测概 率、提升效果以及等效接收能力,建立了多望远镜信 号接收的激光测距探测模型。利用 1.56 m 和 60 cm 双望远镜系统,通过测量带有激光反射器卫星,验证 了双望远镜系统的等效接收能力,验证了多望远镜 信号接收的技术优势。分析了对轨道高度 1000 km、 直径 10 cm 非合作目标测量时所需的望远镜台数, 使该测量技术在微弱信号探测与激光测量中将会发 挥重要作用。

参考文献:

 Jiang Huilin, Fu Qiang, Zhang Yalin, et al. Discussion of the laser ranging with polarization spectral imaging observations and communication technology for space debris [J]. *Infrared and Laser Engineering*, 2016, 45(4): 0401001. (in Chinese)

- [2] Zhu Feihu, Wang Li, Guo Shaogang, et al. Large dynamic range laser ranging system for non-cooperative target[J]. *Infrared* and Laser Engineering, 2014, 43 (S1): 8–12. (in Chinese)
- [3] Zhang Zhongping, Yang Fumin, Zhang Haifeng, et al. The use of laser ranging to measure space debris [J]. *Research* in Astron Astrophys, 2012, 12(2): 212–218.
- [4] Murphy T W Jr, Adelberger E G, Battat J B R, et al. The Apache Point Observatory Lunar Laser-ranging Operation: Instrument description and first detections [J]. *Publications* of the Astronomical Society of the Pacific, 2008, 120 (863): 20-37.
- [5] Li Zhulian, Zhang Haitao, Li Yuqiang, et al. 53 cm binocular telescope high repetition frequency space debris laser ranging system [J]. *Infrared and Laser Engineering*, 2017, 46(7): 0729001. (in Chinese)
- [6] Wu Zhibo, Zhang Haifeng, Li Pu, et al. Laser ranging technology with parallel multi-telescope reception of laser transmitting from one telescope [J]. Journal of Spacecraft TT&C Technology, 2014, 33(2): 134–139. (in Chinese)
- [7] Zhang Zhongping, Zhang Haifeng, Deng Huarong, et al. Experiment of laser ranging to space debris by using two receiving telescopes [J]. *Infrared and Laser Engineering*, 2016, 45(1): 0102002. (in Chinese)
- [8] Degnan J. Millimeter accuracy satellite laser ranging: A Review [J]. AGU Geodynamics Series, 1993, 25: 133–139
- [9] Li Ming, Xue Li, Huang Chen, et al. Estimation of detection range for space debris laser ranging system based on efficient echo probability [J]. *Optics and Precision Engineering*, 2016, 24(2): 260–267. (in Chinese)
- Zhu Nianhong, Wang Lanjuan, Yang Zhenhua, et al. The design of the 1.56 m astrometric telescope [J]. Annals of Shanghai Observatory Academia Sinic, 1981, 3: 225-237. (in Chinese)
- [11] Ye Shuhua, Huang Cheng. Astrodynamics [M]. Jinan: Shandong Technology Press, 2000: 200. (in Chinese)
- [12] David A Arnold. Cross section of ILRS satellites [C]//ILRS Technical Workshop, 2003.
- [13] Zhang Zhongping, Cheng Zhien, Zhang Haifeng, et al. Observation of space debris by ground-based laser ranging system and research on detecting ability [J]. *Infrared and Laser Engineering*, 2017, 46(3): 0329001. (in Chinese)